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Abstract
Background: Oceans are high gene flow environments that are traditionally believed to hamper
the build-up of genetic divergence. Despite this, divergence appears to occur occasionally at
surprisingly small scales. The Galápagos archipelago provides an ideal opportunity to examine the
evolutionary processes of local divergence in an isolated marine environment. Galápagos sea lions
(Zalophus wollebaeki) are top predators in this unique setting and have an essentially unlimited
dispersal capacity across the entire species range. In theory, this should oppose any genetic
differentiation.

Results: We find significant ecological, morphological and genetic divergence between the western
colonies and colonies from the central region of the archipelago that are exposed to different
ecological conditions. Stable isotope analyses indicate that western animals use different food
sources than those from the central area. This is likely due to niche partitioning with the second
Galápagos eared seal species, the Galápagos fur seal (Arctocephalus galapagoensis) that exclusively
dwells in the west. Stable isotope patterns correlate with significant differences in foraging-related
skull morphology. Analyses of mitochondrial sequences as well as microsatellites reveal signs of
initial genetic differentiation.

Conclusion: Our results suggest a key role of intra- as well as inter-specific niche segregation in
the evolution of genetic structure among populations of a highly mobile species under conditions
of free movement. Given the monophyletic arrival of the sea lions on the archipelago, our study
challenges the view that geographical barriers are strictly needed for the build-up of genetic
divergence. The study further raises the interesting prospect that in social, colonially breeding
mammals additional forces, such as social structure or feeding traditions, might bear on the genetic
partitioning of populations.
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Background
The relative role of ecologically mediated divergence in
speciation processes is still under debate [1]. Theory pre-
dicts that barriers to gene flow can evolve as a result of
ecologically-based divergent selection and need not nec-
essarily be associated with separation imposed by geo-
graphic barriers [2-5]. Recent empirical evidence makes it
increasingly clear that ecological factors can indeed drive
speciation processes [6-9]. Traditionally, top-down phylo-
genetic analyses, where the relevant divergence processes
are inferred retrospectively long after the putative split has
occurred have often been invoked to address this ques-
tion. While this is clearly a powerful approach to reveal
evolutionary trajectories, it is by its very nature restricted
to retrospective inferences and can thereby only speculate
about the ecological conditions under which the specia-
tion process was initiated. It is hence necessary to identify
cases where the first steps of divergence appear, even if
one can not definitely know whether it will eventually end
with a true species separation [10-13]. Studying ongoing
differentiation processes in small-scale situations with
unlimited dispersal opportunities is therefore crucial to
investigate the mechanisms driving adaptive divergence.

Marine environments provide excellent study cases, as
they typically allow broad dispersal in mobile taxa and,
compared to terrestrial habitats, offer low travel costs [14].
Still, within geographic ranges of several thousand kilo-
metres genetic isolation by distance is expected and has
been observed even for highly mobile marine predators
[15]. However, it is a challenge to track evolutionary
divergence processes at a smaller spatial scale. The few
that have ventured on this undertaking have produced
interesting results ranging from a role of gamete recogni-
tion molecules [16] to a role of socially mediated infor-
mation [17]. We here present a system that allows
examination of micro-evolutionary processes in an iso-
lated, small-scale marine environment for a highly mobile
top predator.

The Galápagos sea lion (Zalophus wollebaeki) is endemic to
the archipelago and genetically distinct from its nearest
relatives [18]. Thus, any differentiation that can be traced
within the archipelago must be genuine and will not due
to an allopatric past with following reinvasion. Its marine
ecosystem is divided into two distinct habitats (Fig. 1,
Table 1): Fernandina and the west-coast of Isabela differ
from its east-coast and all remaining islands in bathyme-
try, water temperature and nutrient content [19]. While
waters on the central plateau are shallow ('Centre' hereaf-
ter), the sea west of Fernandina drops rapidly to depths of
several kilometres. Central waters are relatively warm and
low in nutrients; the 'West', in contrast, is influenced
strongly by the cold upwelling waters of the Cromwell
current. Such variation in physical properties between the

areas results in considerable ecological differences. Pri-
mary production is markedly higher in the west, and is
particularly pronounced in the area east of Fernandina,
where iron concentrations are highest [20]. The distribu-
tion of animals dependent on aquatic resources mirrors
the ecological differences between these contrasting habi-
tats. Viable populations of endemic sea birds as well as
colonies of the second Galápagos seal species, the Galápa-
gos fur seal (Arctocephalus galapagoensis), are essentially
confined to the more productive western habitat [21,22].
In contrast, the distribution of the Galápagos sea lion
includes both habitats. This results in a rather special situ-
ation, where both intra- as well as inter-specific niche dif-
ferentiation between the two seal species could act as
ecological sources of selective divergence. It poses the
question, whether such environmental contrasts can
translate into genetic divergence in a species with a basi-
cally unlimited dispersal capacity across its entire range.

Results
Ecological divergence
The Galápagos sea lion and the Galápagos fur seal were
sampled extensively across their distribution ranges. Sta-
ble isotope analysis was used to provide insight into for-
aging ecology. δ15N values reflect differences in trophic
levels of prey items, whereas δ13C values indicate foraging
mode [pelagic or benthic: see e.g. [23,24]]. Although both
sea lions and fur seals are characterized generally as
pelagic foragers, we see differences in stable isotope signa-
ture values between syntopic populations of these species.
While mean δ13C values overlap between fur seals and
central sea lion colonies, values from western sea lion col-
onies are displaced significantly (Fig. 2). Quadratic discri-
minant function analysis underpins the difference
between sea lion colonies of different habitats (Wilk's λ =
0.336, F3,136 = 89.6, p < 0.001). The overall jacknifed clas-
sification success between the different sea lion popula-
tions was as high as 95% (Table 2A), indicating a clear
isotopic differentiation between the two habitats.

We further tested for homogeneity of variance in the iso-
topic signal that can be indicative of niche width differ-
ences [25]. For two pairs of directly adjacent populations
of sea lions and fur seals (IBES/Ag_IB and FH/Ag_FH, see
Fig. 1) variances in δ13C values are larger in sea lions
(IBES/Ag_IB: F23,29 = 34.90, p < 0.001, FH/AgFH: F21,29 =
9.92, p < 0.001), while differences in δ15N values are sta-
tistically non-significant after correcting for multiple test-
ing (IBES/Ag_IB: F23,29 = 2.30, p = 0.04; FH/AgFH: F21,29 =
2.57, p = 0.02).

Morphological divergence
Analyses of skull features also show a differentiation
between the western and central colonies which may be
related to different foraging strategies (Fig. 3). Skulls from
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western habitats are generally smaller, yet more robust,
than those from the central group. Mean condylobasal
length of adults are larger in central specimens than in
those from the western habitat (see Additional file 1). Var-
iables that contribute most to inter-habitat variation are:
breadth of skull at preorbital processes, palatal notch –
incisors, length of upper postcanine row, rostral width,
gnathion – posterior border of preorbital process and pal-

atal breadth. Breadth of skull at preorbital processes, audi-
tory breadth, and palatal breadth are greater in western
specimens than in central ones, both in mm and as a per-
centage of condylobasal length. Although absolute rostral
width values are similar in specimens from both habitats,
it appears greater in western specimens than in central
individuals when considered as a percentage of condylo-
basal length. Rostral length appears shorter in western

Map of Galápagos sea lion (Zalophus wollebaeki) rookeries sampled across the Galapagos archipelagoFigure 1
Map of Galápagos sea lion (Zalophus wollebaeki) rookeries sampled across the Galápagos archipelago. Dot size reflects the 
number of sampled individuals. Sampling locations are generally labelled by a two-letter code. Where rookeries have been 
pooled due to sample size limitations they are encoded with four letters. Rookeries of the Galápagos fur seal (Arctocephalus 
galapagoensis) are indicated by the prefix Ag. Diamonds symbolize the average chlorophyll a concentration from 1998–2007 
SeaWiFS satellite data indicative for the nutrient level of a given location (symbol size scales linearly with chl a concentration 
ranging from 0.216–6.339 mg/m3). For details of sampling locations and sample sizes for mtDNA marker, 22 nuclear microsat-
ellites markers and stable isotope analysis see Table 1.
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specimens than in central individuals, again indicating a
shorter, yet more robust, skull in western individuals. Dis-
criminant function analysis shows that specimens of the
two habitats (west n = 27; central n = 9) are clearly sepa-
rated from one another (Wilk's λ = 0.360, F13,22 = 3.013, p
< 0.01). The jack-knifed classification matrix successfully
classifies 72% of specimens to the right colony (Table 2B).

Genetic divergence
Analysis of mitochondrial sequences supports the pattern
of ecological and morphological divergence. Among the
three models tested (see Methods and Table 1) genetic
variation can be attributed almost exclusively to habitat
structure (AMOVA: Φst = 0.224, p < 0.001), whereas the
other models of hierarchical population structure explain
far less variation (colony pair-wise: Φst = 0.086, geology:

Φst = 0.097, pboth < 0.001). After correcting for habitat the
variance component of the colony-pair wise comparison
gets non-significant and explains only 1.2% of the overall
variance. A neighbour-joining tree based on mean cor-
rected pair-wise distance between colonies further con-
firms the split (Fig. 4A).

Analysis of genetic differentiation at the level of microsat-
ellites and the individual colonies using Goodman's
standardized Rst as the pair-wise distance suggests the
same habitat-related pattern (Fig. 4B). This split is corrob-
orated by global estimates of traditional fixation indices
(Rst = 0.020; Gst' = 0.012, θ = 0.012: bootstrapped CI99%
= 0.005–0.021; G-statistic: p < 0.001).

Table 1: Sampling locations and sample sizes

Taxa Island (code on map) Coordinates Number of samples Differentiation scenario: 
geological/ecological

≥ 625 bp mtDNA Amplifying ≥ 21 
microsatellite loci

Stable isotope analysis

Zalophus wollebaeki
(Galápagos sea lion)

Caamaño (CA) 0°46'58''S,
90°17'42''W

27 30 10 group 1/Centre

Floreana (CF) 1°14'16''S,
90°23'16''W

30 29 11 group 1/Centre

Mosquera (MO) 0°24'58''S,
90°16'42''W

40 40 10 group 1/Centre

Santiago (SA) 0°14'18''S,
90°52'25''W

29 30 10 group 1/Centre

Santa Fé (SF) 0°48'18''S,
90°02'25''W

35 39 10 group1/Centre

Española * (ECEG) 1°22'07''S,
89°38'32''W

29 28 19 group 2/Centre

San Cristobal* (ILZN) 0°52'30''S,
89°36'00''W

23 47 -- group 2/Centre

Pinta (PC) 0°32'10''N,
90°44'20''W

30 30 10 group 3/Centre

Genovesa (GE) 0°18'16''N,
89°57'16''W

13 14 14 group 3/Centre

Isabela (IV) 0°57'58''S,
90°57'42''W

30 30 -- group 4/Centre

Fernandina (FH) 0°28'18''S,
91°36'25''W

23 23 22 group 4/West

Isabela *(IBES) 0°09'44''S,
91°25'25''W

27 27 24 group 4/West

Arctocephalus 
galapagoensis

(Galápagos fur seal)

Fernandina (Ag_FH) 0°28'11''S,
91°37'38'' W

-- -- 30

Isabela Banks Bay 
(Ag_IB)

0°01'09''S,
91°29'52''W

-- -- 30

Isabela Marshal Bay 
(Ag_IM)

0°03'58''N,
91°17'12''W

-- -- 30

Zalophus californianus
(Californian sea lion)

Año Nuevo Island 37°06'N,
122°19'W

-- 14 --

Moss Landing Beach 36°47'N,
121°47'W

-- 2 --

TOTAL 336(GSL) 367(GSL) 140(GSL)
11(CSL) 90 (GFS)

Colony locations, number of samples in final analyses and differentiation scenario used for estimation of hierarchical population differentiation for 
the Galapagos sea lion (GSL), the Californian sea lion (CSL) and the Galapagos fur seal (GFS). Locations that were pooled due to sample size 
limitations are labelled with an asterisk.
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As a further test for nuclear genome differentiation, we
used a Bayesian assignment approach. This has the advan-
tage that inferences are made in the absence of any a priori
assumptions inherent in hierarchical frequentist
approaches. Overall, four clusters best explain the genetic
structure in the dataset (Fig. 5A). As expected, the Califor-
nian sea lion which was used as an outgroup (see Meth-
ods) forms a distinct cluster of its own (Fig. 5B, see
Additional file 2). Within the Galápagos archipelago the

existence of three genetic clusters is suggested. Assigning
the individuals to clusters in which membership coeffi-
cients are greatest shows that one cluster (cluster 4) corre-
sponds to the western colonies with 85% of the
individuals assigned correctly (Fig. 5B, see Additional file
2). Membership of the remaining two central clusters is
evenly distributed across the central populations and no
geographical correlate thereof can be deduced (Additional
file 2). When these clusters are combined, 78% of the

Table 2: Summary statistics of discriminant function analysis

a priori classification West Centre Classification success [%]

A) Stable isotopes West 41 (40) 5 (6) 89 (87)
Centre 2 (2) 92 (92) 98 (98)
Total 43 (42) 97 (98) 95 (94)

B) Morphometry West 9 (6) 0 (3) 100 (67)
Centre 4 (7) 23 (20) 85 (74)
Total 13 (13) 23 (23) 89 (72)

Classification success and jacknifed classification success (in brackets) of the discriminant function analysis using A) stable isotope signatures and B) 
multiple morphometric measurements as the predictor variable. Classification success describes the predictive accuracy with which an individual is 
correctly associated with any of the classes of interest that were defined a priori. Correctly classified individuals are shown in bold.

Isotopic biplot showing mean (± 95% CI) of δ13C and δ15N values from juvenile Galápagos sea lions (circles) and Galápagos fur seals (square) collected in different rookeries across the Galápagos IslandsFigure 2
Isotopic biplot showing mean (± 95% CI) of δ13C and δ15N values from juvenile Galápagos sea lions (circles) and Galápagos fur 
seals (square) collected in different rookeries across the Galápagos Islands. The corresponding habitat of each rookery is indi-
cated by colour (white = Centre, grey = West).
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individuals are assigned correctly to their origin in the
centre of the archipelago with a high mean membership
coefficient of 0.76 ± 0.02SE.

Isolation by distance
We further explored the possibility that geographic dis-
tance contributes to genetic differentiation. Indeed, mic-
rosatellites as well as mitochondrial DNA data suggest
isolation by distance (Mantel test mtDNA: R2 = 0.37;
nDNA: R2 = 0.46; pboth < 0.001). However, in the case of
mitochondrial data, the correlation only reflects the habi-
tat split (West versus Centre; Fig. 6). After partialling out
the effect of habitat the evidence for isolation by distance
disappears (partial Mantel test: R2 = 0.04, p = 0.25). For
microsatellite data, pair-wise comparisons of colonies
from the same habitat still follow a statistically significant,
but weaker, isolation by distance pattern (partial Mantel
test: R2 = 0.25, p < 0.001). The overall degree of scatter in
the genetic distance measure significantly increases with
geographic distance indicating equilibrium between gene
flow and drift in a stepping stone model of migration
(partial Mantel: R2 = 0.56, p < 0.001) [compare e.g. [26]].

Another noteworthy difference between the isolation by
distance pattern of mtDNA and nDNA relates to the vari-
ance of the genetic distance measure. For comparable geo-
graphic distances the variance in Fst between populations

Mahalanobis distances of several foraging-related skull mor-phometric measurements with 95% confidence ellipses for female (circles) and male (triangles) adult Galápagos sea lions of either habitat (white = Centre, grey = West)Figure 3
Mahalanobis distances of several foraging-related skull mor-
phometric measurements with 95% confidence ellipses for 
female (circles) and male (triangles) adult Galápagos sea lions 
of either habitat (white = Centre, grey = West).

A) Neighbour-joining tree of mitochondrial DNA showing genetic relationships among rookeries of Galápagos sea lionsFigure 4
A) Neighbour-joining tree of mitochondrial DNA showing genetic relationships among rookeries of Galápagos sea lions. 
Genetic distances between rookeries are based on corrected mean pair-wise sequence comparisons of the mitochondrial con-
trol region. B) 50 percent Neighbour-joining bootstrap consensus tree based on Goodman's Rst at the rookery level for 22 
microsatellite loci. Bootstrap support values (5000 replicates) are shown above the nodes. Abbreviations: GFS = Galápagos fur 
seal, letter codes represent sampled populations (see Fig. 1)
Page 6 of 14
(page number not for citation purposes)



BMC Evolutionary Biology 2008, 8:150 http://www.biomedcentral.com/1471-2148/8/150
within habitats (dotted brace in Fig. 6) and between hab-
itats (solid brace in Fig. 6) is of similar size for nDNA
(F19,45 = 1.14). For mtDNA the variance of Φst for inter-
habitat comparisons is four times as large as the variance
of intra-habitat comparisons (F19,45 = 4.12).

Discussion
Using ecological, morphological and molecular indica-
tors, we find a clear structure between western and central
Galápagos sea lion colonies, even though these are
extremely mobile predators and breeding dispersal is
potentially unrestricted across the entire species range.
The mobility potential is well exemplified by the Califor-
nian sister species of the Galápagos sea lion [18] that can
easily travel several hundred kilometres during foraging
routines [27]. Similarly, for the Galápagos sea lion satel-
lite telemetry data show that the scale of ecological and
genetic divergence lies well within the geographic range of
daily foraging trips [28]. In other marine mammals of
similar mobility [15] including species of seals [29] a
comparable degree of genetic differentiation is usually
found only at geographic scales that are about 10-fold
larger. This is not surprising, as high mobility usually
translates into strong gene flow. In elephant seals for
example, a single male can successfully father 19 offspring
8000 km from its natal rookery [30]. This calls for an
explanation beyond mere distance effects in the Galápa-
gos sea lion, where homogenizing effects of even rare dis-
persal events would equally be expected as in other

polygynous animals. In the following, we discuss the pos-
sible factors that might play a role in this differentiation.

A role of ecology
Using the results of stable isotope analysis as a proxy for
maternal trophic ecology we find that individuals of the
Galápagos sea lion cluster according to their natal habitat.
Colonies in the central habitat are characterized by pelagic
shelf feeding, a foraging strategy that is also typical for the
closely-related Californian sister species. Conversely, col-
onies found adjacent to the deep, nutrient rich habitat in
the west show an atypical benthic signature. This differ-
ence in isotopic signatures between western and central
populations could simply reflect differences in food-web-
wide basal isotopes. It is however intriguing that the fur
seal, which overlaps with the sea lion in this habitat,
shows the typical pelagic δ13C values of eastern sea lions.
This counters the idea that differences in basal isotopes of
the foraging location alone account for the observed dif-
ference in the sea lions. It is rather indicative of resource
partitioning, potentially via character displacement in this
area where competition for a joint resource leads to spe-
cialization of at least one of the competing species. Grant
and Grant [31] have shown in two species of Galápagos
finch that such character displacement can occur rapidly.
As stable isotope values integrate maternal foraging strat-
egies over several months (see Methods), the measured
effect could develop within even a single generation. On
the other hand, the changes in skull features are likely to

Relationship of geographic distance (logarithm of shortest swimming distance) and genetic distance of the mitochondrial (mtDNA) and nuclear marker (microsatellites)Figure 6
Relationship of geographic distance (logarithm of shortest swimming distance) and genetic distance of the mitochondrial 
(mtDNA) and nuclear marker (microsatellites). Triangles symbolize pair-wise comparisons between rookeries that share the 
same habitat. Filled circles stand for comparisons across habitats. The shaded area indicates the range of geographic distances 
that is characteristic for both intra- and inter-habitat specific pairwise comparisons. Dotted brackets visualise the value range 
of genetic distances from within habitat comparisons, solid brackets from between habitat comparisons.
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require longer periods of directional selection, suggesting
that the differences in foraging strategies are established
and stable in the respective populations.

It is clear that the data presented here can only be a first
hint towards such character displacement and need to be

substantiated by several independent lines of evidence
that go beyond the scope of this study [32]. Nonetheless,
other sources of information on Galápagos fur seals and
sea lions indirectly corroborate the interpretation of our
data as being indicative of niche segregation. Fur seals for-
age at night, western sea lions exclusively during the day

A) Results from ten independent runs of STRUCTURE 2.1 [70] for each hypothesized number k of genetically meaningful clus-ters using 16 Californian and 367 Galápagos sea lionsFigure 5
A) Results from ten independent runs of STRUCTURE 2.1 [70] for each hypothesized number k of genetically meaningful clus-
ters using 16 Californian and 367 Galápagos sea lions. Posterior probabilities ln P(x|k) indicate which number of populations are 
most likely to explain the genotypic data. B) Barplot of membership probabilities for the scenario of population subdivision that 
was best supported by the data (k = 4). Each individual is represented by a stacked bar that can be partitioned into a maximum 
of four differently shaded segments, each standing for a genetic cluster. The probability of cluster membership is portrayed by 
relative segment length for each individual. Colonies of origin and genetic stocks are given below, the Californian sea lion (Z.c.) 
is included as the outgroup (see Methods).
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[33], whereas central sea lions show no apparent tempo-
ral pattern [unpublished data from long-term study on a
central rookery [34]]. Scat analyses revealed that, in con-
trast with central sea lions that are using a broad prey spec-
trum [35], trophic niches of fur seals and western sea lions
are highly specialised and show little overlap [36]. Fur-
thermore, sea lions from the different habitats seem to
diverge in diving behaviour [28,37]; hence, dissimilar eco-
logical conditions within the archipelago and the compe-
tition with fur seals in one habitat appear to evoke habitat
specialisation in the sea lion.

A role of natal habitat preference induction and social 
behaviour
To develop levels of genetic differentiation that reflect the
ecological differentiation between different populations
of Galápagos sea lions, some form of pre-zygotic isolation
is required. Habitat choice would be one such mechanism
and could constitute a non-genetic means of assortment.
There is convincing theoretical and empirical evidence
that habitat preferences can be based solely on learning
[4,38]. For instance, early learning can lead to a lifetime
shift in feeding niche, even across species [39]. Natal hab-
itat preference induction is particularly likely to evolve in
species with long lasting social bonds between adults and
young. The discussion regarding the role of socially medi-
ated feeding styles of killer whales as the primary source
of genetic differentiation is a prominent example [17].
Likewise, genetic divergence between transient and resi-
dent wolf populations links to different foraging strategies
and suggests a similar explanation [40].

Galápagos sea lions are highly social animals, whose off-
spring are dependent on their mother for one to three
years [41]. They are likely to have the same long-term
memory [42] and high cognitive abilities as their Califor-
nian sister species [43]. The idea of socially mediated hab-
itat learning thus seems not far fetched and is partly
supported by telemetry data on female Galápagos sea
lions. None of the surveyed females ever crossed the hab-
itat border in any of the recorded foraging trips, although
it lay well within their mobility capacity [28]. In addition
to the "ecological" habitat the social environment may
contribute to reducing gene flow. In contrast to other spe-
cies that only join for reproduction, Galápagos sea lions
maintain haul-out sites year round. In such a situation,
reproductive success is likely to be affected by long-term
interactions with others [34] and predictability of the
social environment is of prime importance [44-46]. Thus,
learned habitat preference induction – be it ecological or
social – may well contribute to pre-zygotic isolation.

The observed isolation by distance pattern strengthens
this idea. The mitochondrial marker reflecting matrilineal
inheritance shows no relationship between genetic and

geographic distance after habitat identity is removed as a
factor. Thus, within one habitat, gene flow seems rela-
tively unrestricted and genetic variants can spread across
the entire central region. This homogenizing effect of gene
flow that is witnessed by the absence of isolation by dis-
tance and the low variance of intra-habitat comparisons
suggests that site fidelity alone [44] is not strong enough
in this species to create significant population structure as
reported in other otariid seals [47]. Hence, environmental
differences seem to be key to the understanding of genetic
divergence. This is corroborated by the fact that the vari-
ance of genetic distance between rookeries of different
habitats is much larger than among rookeries of the same
habitat indicating that drift across habitats is strong rela-
tive to gene flow.

For microsatellites the isolation by distance pattern is in
line with a stepping stone model of a regional equilibrium
with gene flow and drift [compare [26]]. This clear differ-
ence from the mitochondrial pattern is not easy to explain
and may partly be due to the fact that differentiation of
the two markers differs by an order of magnitude. It may
further be due to the four times smaller effective popula-
tion size of the mitochondrial marker or differences in
mutational dynamics between the two marker systems.
The most compelling explanation might lie in the large
difference in information content of the two markers.
While mitochondrial results are based on a short stretch of
sequence data in one locus, the results of nuclear DNA
stem from 22 independent highly variable microsatellite
loci. The information for the mtDNA may thus simply not
suffice to pick up the isolation by distance pattern
between populations sharing the same habitat.

Another factor bearing on the isolation by distance pat-
terns could also be sex specific migration behaviour. The
nuclear pattern suggests that males are more likely to cross
occasionally the habitat boundaries, but would on the
other hand show high site fidelity even within the respec-
tive habitats, together with the females. While female site
fidelity is characteristic for most mammalian species [48],
short range dispersal in males is less common. Why then
would males restrict their dispersal to an area that is even
smaller than their daily putative foraging range? In con-
trast to other species that only join for reproduction, the
sea lion adult males are known to reside for years [Pör-
schmann et al. in prep, [49]]. In such a situation reproduc-
tive success is likely to be affected by long-term
interactions with others [34] and predictability of the
social environment is of prime importance [44,45]. For
males, in particular, long-term social dominance hierar-
chies, social queuing and 'dear enemy relationships' are
essential for territorial success [50-52]. The fact that males
of the Antarctic fur seal (Arctocephalus gazella) return to
locations at a scale less their own body length year after
Page 9 of 14
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year [53] and males that are able to establish territories
several years in a row increase reproductive success [54]
can be interpreted along these lines.

A role of selection against immigrants
Apart from natal-induced habitat preference, an alterna-
tive mechanism that may contribute to pre-zygotic isola-
tion was described by Hendry [55]. In a modelling
approach he proposed that selection against migrants
themselves can contribute substantially to ecologically
dependent reproductive isolation. Nosil et al. [56] even
suggested that this mechanism plays a critical role in eco-
logical modes of speciation. Given the difference in ecol-
ogy and the apparent behavioural and morphological
adaptations in the West, we might expect that immigrant
sea lions from the central area would have problems to
compete successfully with resident animals. Thus, once
ecological differentiation has been initiated, this factor
would stabilize any genetic divergence.

A role of geography and geology
The geology of the Galápagos can be described as a com-
bination of concentrated volcanic activity at the archipel-
ago's western rim (hotspot) and lithospheric motion that
carries the emerging volcanoes off in a north-eastern
direction. This results in a shallow submarine platform
with steep abysses at its western and southern side that
gently slopes to the north-east where it joins the intersec-
tion of two major tectonic plates [57]. These geological
processes lead to an almost linear island age structure
across the archipelago: easternmost islands are oldest (San
Cristobal, Española ~3 mya), westernmost islands are
youngest (Fernandina: ca. 0.08 mya [58]). Assuming com-
parable oceanographic conditions to those of today, we
would expect similar habitat differences across the archi-
pelago over geological times. Without any geographic bar-
riers, the cold upwelling western waters would mix with
warmer waters in the east, and ecological differences
would most likely resemble an environmental gradient. It
has been shown that such environmental gradients can
trigger genetic divergence into two discrete states in mod-
els of sympatric divergence [5]. The emergence of Isabela
in the west would have further accentuated this. The large
northern and southern volcanoes of Isabela emerged
about 0.2–0.4 mya ago [59] and probably joined only
within the past few thousand years (D. Geist personal
communication).

Conclusion
Our data show evidence for intra-specific divergence of
the Galápagos sea lion at ecological, morphological and
genetic levels, which may potentially lead to the emer-
gence of a new species over time. Our analysis shows that
a multitude of factors may play a role in ecological diver-
gence, including some behavioural conditions that are

specific to the system. In particular, the data constitute an
example where substantial effects of a competitor species
on intra-specific evolutionary processes appears likely
[31,32]. Geographic isolation, on the other hand, seems
to play only a small role. Thus, our results are in line with
an increasing number of studies that suggest that the cur-
rent dominance of allopatric and parapatric speciation
concepts in evolutionary theory may be in part an artefact
of studying speciation patterns at levels where the proc-
esses have long been completed. The study highlights that
divergence processes are likely to be based on a variety of
factors, and that little will be gained by exclusively adher-
ing to a controversial debate about geographic speciation
scenarios [7].

Methods
Tissue sample collection and DNA extraction
A total of 376 tissue samples were collected from the inter-
digital membrane of the hind flippers from newborn indi-
viduals of the Galápagos sea lion and the Galápagos fur
seal at their natal colonies. Sampling locations were
spread uniformly across the Galápagos archipelago
excepting the northernmost islands of Darwin and Wolf
(Fig. 1, Table 1). Adjacent colonies with low individual
sample sizes were pooled, their geographic position aver-
aged and subsequently treated as one entity (indicated by
four letter codes in Fig. 1). Samples of the Californian sea
lion were supplied from locations central to the taxon's
range containing adults (n = 5) as well as sub-adults (n =
11) (Table 1).

Stable isotope analysis
Skin samples for stable isotope analysis were taken from a
total of 140 the Galápagos sea lion pups and from 90
Galápagos fur seal pups (Table 1) that were about three
months old. This is an age where pups are nutritionally
fully dependent of their mothers [41]. The stable isotope
signature therefore exclusively represents maternal forag-
ing strategies. Skin samples were oven dried at 65°C for
24 h. Samples were pulverised, weighed (ca. 0.55 mg) and
loaded into tin cups prior to analysis of carbon (δ13C) and
nitrogen (δ15N) stable isotope ratios [for analytical details
see [60]]. Analytical precision was < 0.1‰ (δ13C) and <
0.3‰ (δ15N).

In order to examine whether isotopic and elemental vari-
ation in skin samples represented a viable means to differ-
entiate the different genetic stocks and species, we ran a
discriminant function analysis using δ13C, δ15N and C:N
values as predictors of stock/species following Harrod et
al. [61]. We used a quadratic discriminant function as our
sample size differed between groups and because of heter-
ogeneity of variance in some variables.
Page 10 of 14
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Morphometric analysis
A total of 43 skulls of the Galápagos sea lion held at sev-
eral natural history museums and institutions (see Addi-
tional file 3) were measured for the following 13 variables
using Mitotoyo digital calipers (accuracy ± 0.01 mm):
condylobasal length, breadth of preorbital processes,
interorbital constriction, palatal notch – incisors, length
of upper postcanine row, rostral width, gnathion – poste-
rior of maxilla (palatal), breadth of zygomatic root of
maxilla, zygomatic breadth, basion – zygomatic root
(anterior), auditory breadth, gnathion – posterior border
of preorbital process, palatal breadth at postcanine five.
All skulls were used for univariate statistics; thirty-six of
these (those with no missing variables) were used for dis-
criminant analyses. Only fully grown adult specimens
with suture indices of > 23 for males and > 18 for females
were included in the analyses [62]. Raw data were initially
standardized to z-scores so that each variable had equal
weighting. Specimens were grouped according to the hab-
itat where they were collected. Note that this leads to a
conservative classification estimate, since skull samples
may include occasional visitors that originate from other
habitats. Discriminant function analysis using SYSTAT 11
was applied to examine relationships between individuals
from the different habitats. Multivariate ANOVA
(MANOVA) was followed by either two-group or multi-
group discriminant function analysis. The MANOVA was
applied initially to test whether group centroids for speci-
mens were significantly different. Mahalanobis distances
of individuals from the mean centroid were plotted for
each habitat, against discriminant axes I and II. When
sexes were analyzed separately, both males and females
showed similar Mahalanobis distances. Due to low num-
bers of individuals from the western habitat (males = 5,
females = 4) sexes were pooled to provide greater resolu-
tion of results.

Mitochondrial DNA: laboratory procedures and data 
analysis
After extraction of genomic DNA, the mitochondrial con-
trol region was amplified by use of PCR with taxon-spe-
cific modifications of highly conserved primers located in
the tRNAthr/pro and the tRNAphe region, purified by ultrafil-
tration and sequenced on an ABI 3730 sequencer [18].
Quality ascertainment and sequence alignment were con-
ducted in SEQMAN™ version 6.1. (DNAStar Inc.). Individ-
uals with less than 625 bp of reliably identified sequence
were excluded from the analysis leaving a total of 336
individuals. From these, 29 haplotypes can be distin-
guished. If alignment gaps are included as a fifth character
the number of haplotypes rises to 36. Sequences for all
individuals and the haplotype alignment are deposited as
alignment ALIGN_001234 in the EMBL-Align database
that can be accessed by the EBI sequence retrieval system
[63].

Φst was inferred by AMOVA as implemented in ARLE-
QUIN 3.10. [64] and used as an estimator of hierarchical
population differentiation of the mitochondrial genome.
We compared three scenarios (see Table 1): comparisons
among colonies a) without any further hierarchical level,
b) grouping colonies by island geology following Rass-
mann et al. [65] c) grouping colonies by habitat type.
Genetic distances were based on the K80 nucleotide sub-
stitution model, which is closest to the substitution model
suggested by Wolf et al. [18]. Qualitatively, results were
unaffected by whether alignment gaps were or were not
included in the analysis.

Nuclear DNA: microsatellite genotyping and data analyses
Genomic DNA was genotyped for a total of 367 Galápa-
gos sea lion and 16 Californian sea lions at 22 microsatel-
lite loci [for further details see [18,66,67]]. Population
structure was inferred using the program STRUCTURE
[68] including the Californian sea lion in the analysis, as
otherwise the MCMC would not converge. Evanno et al.
[69] proposed an ad hoc statistic, ∆k, to detect the number
of clusters that best fit the dataset. We did not adhere to
this procedure for two reasons: firstly, it is not suited to
resolve less than three clusters and secondly, it may lead
to unreliable results, as the calculation of ∆k includes sev-
eral chains that may have not converged. We therefore fol-
lowed the original method by Pritchard [70], namely to
run several chains (10) and for each value of k select the
MCMC run with the smallest value of -log(Pr(x|k)). Con-
ventional Fst [71] and Rst estimates [72] were used to esti-
mate the degree of genetic differentiation between the
inferred populations using FSTAT 2.9.3.2. [73]. The G sta-
tistic proposed by Goudet et al. [74] was taken for statisti-
cal inference on global population differentiation.
Bootstrapped pair-wise Rst(Goodman) distances were
obtained from the software MICROSAT 1.5d [75] and
used for cluster-based tree reconstruction in the PHYLIP
module Neighbor [76].

Isolation by distance analysis
Stepping stone models on a two-dimensional space pre-
dict a linear relationship between Fst/(1-Fst) and the log-
arithm of geographic distance [77]. Because pairwise
elements of distance matrices are not independent, a
Mantel test with 104 permutations was used to test for the
statistical significance of this relationship ['ecodist pack-
age' in R [78]]. In migration – drift equilibrium the vari-
ance of the genetic distance measure is further expected to
increase with geographic distance [26]. We therefore
assessed if the degree of scatter in the genetic distance
measure increased with geographic distance. This was
done by first obtaining the residuals from a standard lin-
ear regression of genetic distance (Fst/(1-Fst)) on the log-
arithm of geographic distance. These residuals and the log
geographic distance matrix were then subjected to a par-
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tial Mantel test to test for statistical significance. As popu-
lation structure can artificially produce statistically
significant isolation by distance relationships, we also
conducted partial Mantel tests correcting for the influence
of habitat.
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